

Hypotheses

Null vs Alternative Hypotheses

- Null Hypothesis, H_0 , is the claim regarding the population statistic that we are examining.
 - ▷ It is stated using the following notation
 - H_0 : characteristic = value
- Alternative Hypothesis, H_{α} , is the competing claim; we are trying to find evidence for this.
 - ▷ It will have one of three forms:
 - H_{α} : characteristic < value H_{α} : characteristic > value H_{α} : characteristic \neq value

P-values and Proving H_a

- The *P-value* of a test result is the probability of that result occurring if H_0 is true
 - ▶ We compare this to an agreed-upon threshold (the *significance level*, α). *P***-value < \alpha** – we have convincing evidence that H_{α} is true.

P-value ≥ α – we have failed to disprove H_0 and we cannot take H_α as true.

Note that we have not proven H_0 ; we have simply been unable to disprove it.

Type 1 & Type 2 Errors; Power

- Type 1 Error Reject H_0 when H_0 is actually true
 - ▷ *i.e.*, falsely accept H_a

The significance level, α , is the probability of getting a type 1 error.

- Type 2 Error Not rejecting H_0 when H_0 is actually false
 - \triangleright *i.e.*, Rejecting H_a when H_a is actually true

 β is the probability of getting a type 2 error

- **Power** The probability that a test will correctly confirm H_a when H_a is, in fact, true.
 - ▷ Power = 1β

Calculating a P-value

- We calculate the *P-value* of a test result by calculating the z-score of our result, compared to the hypothesized value, and then finding the probability associated with this z-score.
- The *test statistic* (z-value) of our test result is:

Z =

Z - Z score/test statistic; \hat{p} - proportion in sample

p - hypothesized proportion; *n* - sample size

- H_0 should be rejected if the P-value $\leq \alpha$
 - $\triangleright \alpha$ is the significance level chosen for the test.

Obtaining P-value from z score

 Upper-tailed test H_{α} : $\pi > h$ P-value = 1 – P(z) H_{α} : $\pi < h$ P-value = P(z) Lower-tailed test $H_{\alpha}: \pi \neq h$ if z > 0, P-value = 2(1 - P(z)) Two-tailed test if z < 0, P-value = 2P(z) π - Test value from H₀; **h** - hypothesized value; z - Z score/test statistic; P(z) - P-value from z table

Testing a Population Mean, μ

Calculating the test statistic

The test statistic is a *t* score when testing a population mean.

$$t = \frac{\text{statistic} - \text{parameter}}{\text{stddev of statistic}} = \frac{\overline{x} - \mu_0}{\frac{s_x}{\sqrt{n}}}$$

t - t-score/test statistic; \overline{x} - proportion in sample s_x - sample standard deviation; **n** - sample size

Validity requirements This equation is valid if: • Random data • 10% rule $n \le 0.1 N$ Large counts n ≥ 30

Validity requirements This equation is valid if: • Random data 10% rule

 $n \le 0.1 N$ • Large counts $n \cdot \hat{p} \ge 10$ $n(1-\hat{p}) \ge 10$

Calculator Note	
On your graphing calculator, three functions are associated with testing hypotheses:	
 1-PropZTest 	Proportion test
• T-Test	Mean (s _x)
• Z-Test	Mean (σ)

